Crystal Structure of $\mathrm{Na}_{3} \mathrm{PO}_{\mathbf{4}} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$

M. T. AVERBUCH-POUCHOT and A. DURIF
Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USMG 166X, 38042 Grenoble Cédex, France

Received April 6, 1982; in final form July 7, 1982

Abstract

The crystal structure of trisodium monophosphate hemihydrate was determined. The space group is $C 2 / c$ and a unit cell contains eight formula units. The unit cell dimensions of $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ are $a=$ $9.631(3), b=5.416(2), c=16.938(8) \AA, \beta=102.60(5)^{\circ}$. The final R value is 0.027 for a set of 1430 independent reflections. This atomic arrangement is mainly a three-dimensional network of distorted NaO_{6} octahedra. The hydrogen bonding scheme is given.

Introduction

Trisodium monophosphate hemihydrate has been characterized during various investigations of the $\mathrm{H}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{Na}_{2} \mathrm{O}$ system (1-4), but up to now the crystal structure of this salt has not been investigated.

Chemical Preparation

$\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ crystals were obtained during experiments run for the preparation of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ (H.T.) crystals. Schematically the reaction used here is

$$
\mathrm{AlPO}_{4}+4 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{NaAlO}_{2}
$$

The aluminum monophosphate is dissolved in a concentrated sodium hydroxide solution which is then slowly evaporated at low temperature $\left(60-80^{\circ} \mathrm{C}\right)$. Crystals of $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ appear when the temperature is approximately $60^{\circ} \mathrm{C}$. They are stout monoclinic prisms, apparently very stable at room temperature since their preparation more than 2 months ago.

Crystal Data and Structure Determination

$\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ is monoclinic with the unit cell dimensions $a=9.631(3), b=$ $5.416(2), c=16.938(8) \AA, \beta=102.60(5)^{\circ}$. There are eight formula units per cell and the calculated density is 2.657 . The observed extinction conditions

$$
\begin{aligned}
& h k l \text { with } h+k=2 n, \\
& h 0 l \text { with } h=2 n \text { and } 1=2 n
\end{aligned}
$$

correspond to $C c$ or $C 2 / c$ as possible space groups. The structure determination will show that the centrosymmetrical $C 2 / c$ is the correct one.

A prismatic crystal $(0.32 \times 0.26 \times 0.26$ mm^{3}) was chosen for the measurements on a Philips PW 1100 four-circle automatic diffractometer operating with silver $K \alpha$ radiation ($0.5608 \AA$) monochromatized by a graphite plate. The intensities of 1755 reflections with $\theta<30^{\circ}$ were measured, using the following conditions: ω-scan, scan speed $0.03^{\circ} \mathrm{sec}^{-1}$, scan width 1.20°. Back-

TABLE I
Atomic Coordinates

Atom	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$B_{\text {eq. }}(\sigma)$
\mathbf{P}	$0.15691(4)$	$0.38662(7)$	$0.11307(2)$	$0.700(5)$
$\mathrm{Na}(1)$	$0.18100(8)$	$0.5305(1)$	$0.95193(4)$	$1.38(1)$
$\mathrm{Na}(2)$	$0.00084(9)$	$0.0973(2)$	$0.59730(5)$	$1.83(1)$
$\mathrm{Na}(3)$	$0.64975(7)$	$0.1680(1)$	$0.78490(4)$	$1.22(1)$
$\mathrm{O}(\mathrm{W})$	$0.0000(0)$	$0.9551(3)$	$0.25000(0)$	$1.63(3)$
$\mathrm{O}(1)$	$0.1013(1)$	$0.2354(2)$	$0.03580(7)$	$1.28(2)$
$\mathrm{O}(2)$	$0.0324(1)$	$0.5265(2)$	$0.64902(7)$	$1.29(2)$
$\mathrm{O}(3)$	$0.7564(1)$	$0.2800(2)$	$0.67431(7)$	$1.31(2)$
$\mathrm{O}(4)$	$0.7412(1)$	$0.1124(2)$	$0.09349(7)$	$1.32(2)$
H	$0.429(3)$	$0.357(6)$	$0.229(2)$	$3.1(7)$

Note. The estimated standard deviations are given in parentheses. Thermal factors are $\boldsymbol{B}_{\text {eq. }}$ for nonhydrogen atoms and $B_{\text {iso }}$. for hydrogen atoms.
syntheses. After some refinement cycles with anisotropic thermal parameters the R value is 0.028 for a set of 1430 reflections such that

$$
\begin{aligned}
& F_{0}>2 \sigma_{F}, \\
& F_{0}-F_{c}<20 \quad \text { in a scale } 0-1026 .
\end{aligned}
$$

At this stage a difference Fourier map revealed the hydrogen atoms. Final refinement cycles, including the hydrogen atoms (with isotropic thermal factors), gave a final R value of 0.027 with the same set of reflections.

Table I reports the final atomic coordinates with the calculated $B_{\text {eq. }}$ for nonhydrogen atoms and $B_{\text {iso. }}$ for hydrogen atoms. All atoms are in the general position of the $C 2 / c$ space group with the exception of the water

TABLE II
Anisotropic Thermal Parameters β_{ij} for Nonhydrogen Atoms

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
\mathbf{P}	$0.00201(2)$	$0.00548(7)$	$0.00068(1)$	$-0.0004(1)$	$0.00050(2)$	$0.00006(6)$
$\mathrm{Na}(1)$	$0.00498(6)$	$0.0105(2)$	$0.00098(2)$	$-0.0046(2)$	$0.00042(6)$	$0.0012(1)$
$\mathrm{Na}(2)$	$0.00688(8)$	$0.0122(2)$	$0.00142(2)$	$0.0057(2)$	$0.00098(7)$	$-0.0003(1)$
$\mathrm{Na}(3)$	$0.00377(6)$	$0.0110(2)$	$0.00092(2)$	$0.0008(2)$	$0.00072(5)$	$0.0003(1)$
$\mathrm{O}(\mathrm{W})$	$0.00397(15)$	$0.0081(4)$	$0.00217(6)$	$0.0000(0)$	$0.00031(16)$	$0.0000(0)$
$\mathrm{O}(1)$	$0.00512(11)$	$0.0090(3)$	$0.00085(3)$	$-0.0049(3)$	$0.00074(9)$	$-0.0011(2)$
$\mathrm{O}(2)$	$0.00283(9)$	$0.0149(3)$	$0.00110(3)$	$-0.0037(3)$	$0.00129(8)$	$-0.0008(2)$
$\mathrm{O}(3)$	$0.00343(9)$	$0.0111(3)$	$0.00125(3)$	$-0.0043(3)$	$0.00052(9)$	$-0.0021(2)$
$\mathrm{O}(4)$	$0.00499(10)$	$0.0092(3)$	$0.00098(3)$	$-0.0070(3)$	$0.00075(9)$	$0.0003(2)$

Note. Estimated standard deviations are given in parentheses. The formula used here is

$$
T=\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l
$$

ground was measured during 5 sec at each extremity of the scan domain. Two reference reflections $\overline{1} 36$ and $1 \overline{3} \overline{6}$) were measured every 2 hr without any significant variation. A final set of 1715 independent observations was obtained from this measurement. No absorption correction was made.
The crystal structure was solved by using classical methods: study of the Patterson function followed by successive Fourier

TABLE III
Main Interatomic Distances and Bond Angles in the PO_{4} Tetrahedron

P	$\mathrm{O}(1 a)$	$\mathrm{O}(2 e)$	$\mathrm{O}(3 g)$	$\mathrm{O}(4 e)$
$\mathrm{O}(1 a)$	$1.540(2)$	$2.521(2)$	$2.498(2)$	$2.524(2)$
$\mathrm{O}(2 e)$	$110.24(10)$	$1.533(2)$	$2.513(2)$	$2.515(2)$
$\mathrm{O}(3 g)$	$108.23(10)$	$109.61(9)$	$1.542(2)$	$2.517(2)$
$\mathrm{O}(4 e)$	$109.82(9)$	$109.64(10)$	$109.28(10)$	$\underline{1.544(2)}$

TABLE IV
Main Interatomic Distances and Bond Angles in the NaO_{6} Polyhedra

$\mathrm{Na}(1) \mathrm{O}_{6}$ polyhedron						
$\mathrm{Na}(1)$	O(1a)	O(1d)	O(2f)	O(3f)	$\mathrm{O}(4 b)$	$\mathrm{O}(4 \mathrm{c})$
O(1a)	2.377(2)	3.350(4)	3.498(2)	4.099(2)	4.588(2)	2.524(2)
O(1d)	86.42(7)	2.514(2)	4.412(2)	2.498(2)	3.686(3)	3.482(2)
O(2f)	94.86(7)	129.05(7)	2.372(2)	3.088(2)	3.381(2)	4.403(2)
O(3f)	107.07(7)	56.92(5)	74.41 (6)	2.714(2)	3.556(2)	4.896(2)
O(4b)	161.91(8)	100.67(7)	93.47(7)	90.62(7)	2.269(2)	3.545(3)
$\mathrm{O}(4 c)$	63.95(6)	90.46(7)	135.31(7)	147.25(7)	99.10(6)	2.388(2)
$\mathrm{Na}(2) \mathrm{O}_{6}$ polyhedron						
Na(2)	O(W)	$\mathrm{O}(1 e)$	$\mathrm{O}(1)$	$\mathrm{O}(2 a)$	$\mathrm{O}(4 e)$	$\mathrm{O}(4 \mathrm{~g})$
O(W)	2.611(1)	4.247(2)	4.849(2)	3.174(3)	3.334(2)	4.313(2)
O(1e)	116.18(8)	2.391(2)	3.279(3)	4.661(2)	3.862(2)	3.686(3)
$\mathrm{O}(1)$	152.53(7)	86.84(7)	2.380(2)	$3.498(2)$	3.482(2)	3.636(3)
O(2a)	77.11(7)	146.21(8)	92.02(7)	2.480 (2)	4.425 (2)	2.515(2)
O(4e)	77.13(5)	97.57(7)	85.50(6)	116.02(6)	2.734(2)	5.525(0)
O(4g)	105.36(6)	89.86(7)	88.53(7)	56.35(5)	170.18(8)	2.811(2)
$\mathrm{Na}(3) \mathrm{O}_{6}$ polyhedron						
$\mathrm{Na}(3)$	O(W)	$\mathrm{O}(2 \mathrm{c})$	O(2h)	$\mathrm{O}(3 a)$	O(3h)	$\mathrm{O}(4 d)$
O(W)	$2.495(2)$	3.340(3)	3.340(3)	3.346(2)	4.796(3)	3.334(2)
O(2c)	84.76(6)	2.460 (2)	3.618(3)	2.513(2)	3.501(2)	4.852(2)
O(2h)	85.92(6)	96.07(7)	2.405(2)	4.719(2)	3.088(2)	3.381(2)
O(3a)	86.05(5)	62.17(6)	157.42(7)	2.407(2)	3.755(2)	3.981(2)
O(3a)	166.95(7)	93.82(7)	81.32(7)	104.77(6)	2.333(2)	3.556(2)
O(4d)	85.50(6)	168.64(7)	89.05 (6)	111.30(7)	96.98(7)	2.416(2)

TABLE V
Hydrogen Bond Scheme (Angles and Distances)

$\mathrm{O}(\mathrm{W})-\mathrm{H}$	$\mathrm{H} . \ldots(3)$	$\mathrm{O}(\mathrm{W})-\mathrm{O}(3)$	$\mathrm{H}-\mathrm{O}(\mathrm{W})-\mathrm{H}$	$\mathrm{O}(\mathrm{W})-\mathrm{H} . \ldots . \mathrm{O}(3)$
$(2 \times) 0.88(4) \AA$	$(2 \times) 1.87(4) \AA$	$2.732(2) \AA$	$106(5)^{\circ}$	$166(4)^{\circ}$

TABLE VI
Symmetry Code Used in Tables III and IV
molecule located on a twofold axis. Table II gives the anisotropic thermal factors for the nonhydrogen atoms.
A unitary weighting scheme was used for all least-squares calculations.

Description of the Structure

The PO_{4} tetrahedron, whose main interatomic distances and bond angles are re-

Fig. 1. Projection of the atomic arrangement along the \mathbf{b} axis.
ported in Table III, is not very distorted:

$$
\begin{array}{r}
1.533<\mathrm{P}-\mathrm{O}<1.544 \AA \\
108.23<\mathrm{O}-\mathrm{P}-\mathrm{O}<110.24^{\circ}
\end{array}
$$

with averages $\overline{\mathrm{P}-\mathrm{O}}=1.540 \AA$ and $\mathrm{O} \widehat{-\mathrm{P}-\mathrm{O}}$ $=109.47^{\circ}$.
NaO_{6} polyhedra. The three independent sodium atoms have a strongly distorted octahedral coordination. The main geometrical features of these polyhedra are reported in Table IV.

The water molecule and the hydrogen bond scheme. The water molecule is located on a twofold axis. Table IV reports the main characteristics for this molecule and the hydrogen bond scheme.

As can be seen from Fig. 1, this atomic arrangement may be described as a three-
dimensional network of very distorted NaO_{6} octahedra.

In addition, it may be noticed that NaO_{6} octahedra are not equivalent. $\mathrm{Na}(1) \mathrm{O}_{6}$ polyhedron is built up only with oxygen atoms, while $\mathrm{Na}(2) \mathrm{O}_{6}$ and $\mathrm{Na}(3) \mathrm{O}_{6}$ polyhedra have a water molecule in their coordination. The average values for the $\mathrm{Na}-\mathrm{O}$ distances in these three octahedra are, respectively, $2.439\left(\mathrm{Na}_{1}\right), 2.568\left(\mathrm{Na}_{2}\right)$, and $2.419\left(\mathrm{Na}_{3}\right)$.

References

1. J. D'Ans and O. Schneiner, Z. Phys. Chem. 75, 101 (1910).
2. H. Menzel and E. Von Sahr, Z. Elektrochem. 43, 104 (1937).
3. O. T. Quimby, Chem. Rev. 40, 147 (1974).
4. B. Wendrow and K. A. Kobe, Ind. Eng. Chem. 44, 1439 (1952).
